Similarly, making stuff have a great life expectancy is much more expensive than having it optimized for cost and operational requirements instead but stored somewhere you can replace individual components as and when they fail, and it's also much easier to maximise life expectancy somewhere bombarded by considerably less radiation.
If anything, I'd expect large-scale Mars datacenters before large-scale space datacenters, if we can find viable resources there.
Underwater [0] is the obvious choice for both space and cooling. Seal the thing and chuck it next to an internet backbone cable.
> More than half the world’s population lives within 120 miles of the coast. By putting datacenters underwater near coastal cities, data would have a short distance to travel
> Among the components crated up and sent to Redmond are a handful of failed servers and related cables. The researchers think this hardware will help them understand why the servers in the underwater datacenter are eight times more reliable than those on land.
[0] https://news.microsoft.com/source/features/sustainability/pr...
There are plenty of data centers in urban centers; most major internet exchanges have their core in a skyscraper in a significant downtown, and there will almost always be several floors of colospace surrounding that, and typically in neighboring buildings as well. But when that is too expensive, it's almost always the case that there are satellite DCs in the surrounding suburbs. Running fiber out to the warehouse district isn't too expensive, especially compared to putting things in orbit; and terrestrial power delivery has got to be a lot less expensive and more reliable too.
According to a quick search, StarLink has one 100g space laser on equipped satellites; that's peanuts for terrestrial equipment.
You still have to build the GPUs, etc for the datacenter whether it’s on Earth or in orbit. But to put it in space you also need massive new cooling solution, radiation shielding, orbital boosting, data transmission bandwidth, and you have to launch all of that.
And then, there are zero benefits to putting a datacenter in space over building it on Earth. So why would you want to add all that extra expense?
The obsolete stuff can be deorbited or recycled in space.
Latency wise it seems okay for llm training to put them higher than Starlink to make them last longer and avoid decelerating because of the atmosphere. And for inference, well, if the infra can be amortized over decades than it might make the inference price cheap enough to endure additional latencies.
Concerning communication, SpaceX I think already has inter-starlinks laser comms, at least a prototype.