Preferences

But we know this is not actually robust because storage and power failures tend to be correlated. The most recent Jepsen analysis again highlights that it's flawed thinking: https://jepsen.io/analyses/nats-2.12.1

The Aurora paper [0] goes into detail of correlated failures.

> In Aurora, we have chosen a design point of tolerating (a) losing an entire AZ and one additional node (AZ+1) without losing data, and (b) losing an entire AZ without impacting the ability to write data. [..] With such a model, we can (a) lose a single AZ and one additional node (a failure of 3 nodes) without losing read availability, and (b) lose any two nodes, including a single AZ failure and maintain write availability.

As for why this can be considered durable enough, section 2.2 gives an argument based on their MTTR (mean time to repair) of storage segments

> We would need to see two such failures in the same 10 second window plus a failure of an AZ not containing either of these two independent failures to lose quorum. At our observed failure rates, that’s sufficiently unlikely, even for the number of databases we manage for our customers.

[0] https://pages.cs.wisc.edu/~yxy/cs764-f20/papers/aurora-sigmo...

I believe testing over paper claims

This item has no comments currently.

Keyboard Shortcuts

Story Lists

j
Next story
k
Previous story
Shift+j
Last story
Shift+k
First story
o Enter
Go to story URL
c
Go to comments
u
Go to author

Navigation

Shift+t
Go to top stories
Shift+n
Go to new stories
Shift+b
Go to best stories
Shift+a
Go to Ask HN
Shift+s
Go to Show HN

Miscellaneous

?
Show this modal