Preferences

There is a time- honored, straightforward way to deal with the last two percent problem, which is to overbuild by a couple of percent or so.

That’s not how the maths works unfortunately.

Basically, you end up having to overbuild to crazy levels, or build insane amounts of battery storage, which only gets used a few days a year.

That is right (if rather exaggerated, and I will note that it was you who originally picked the figure of two percent), and in practice, we accept a certain risk that we will not always have all the capacity we want, even though (or because) we cannot precisely predict how big or often these events will be. There is no particular reason to think this specific case is any different.
Why can't we predict how big or how often those events would be? We have clear understandings of the distribution of probabilities for all kinds of weather scenarios - see for example 1-50/100/1000 year flood/droughts.
I'm not saying we cannot do it, just that we cannot always get it right, and there is plenty of empirical evidence for that.

The second point is that the distribution has a long tail, especially when we consider the possibility of multiple independent incidents overlapping in time, to the point where it becomes infeasible to suppose that we could be prepared to continue operating as if nothing had happened in all conceivable scenarios, regardless of how accurately we could predict their likelihood.

I do not understand your argument We also cannot get right predicting the failures of fossil fuel generation. Sometimes multiple plants have outages that coincide and we have blackouts. Shit happens, and will continue to happen. Meanwhile we can make statistically rational plans.

We have coal fired plants in Australia with <90% uptime (often unscheduled), but somehow they're considered baseload rather than intermittent.

We can and do, and there are detailed plans based on those weather scenarios (eg for the Australian east coast grid; there is AEMO’s Integrated System Plan).

Things in the US are a bit more of a mixed bag, for better or worse, but there have been studies done that suggest that you can get very high renewables levels cost effectively, but not to 100% without new technology (eg “clean firm” power like geothermal, new nuclear being something other than a clusterfumble, long-term storage like iron-air batteries, etc etc etc).

The best technologies there are (IMO) e-fuels and extremely low capex thermal.

There are interesting engineering problems for sources that are intended to operate very infrequently and at very low capacity factor, as might be needed for covering Dunkleflauten. E-fuels burned with liquid oxygen (and water to reduce temperature) in rocket-like combustors might be better than conventional gas turbines for that.

The problem is the last two percent isn't evenly distributed in time, but rather occurs rarely, but in large chunks. On average it's 2%, but not at each point in time.

Also, if solar ends up much cheaper than wind there's going to be need for seasonal energy storage, which could be considerably more than 2% at high latitude. Batteries are unsuitable for this.

This item has no comments currently.

Keyboard Shortcuts

Story Lists

j
Next story
k
Previous story
Shift+j
Last story
Shift+k
First story
o Enter
Go to story URL
c
Go to comments
u
Go to author

Navigation

Shift+t
Go to top stories
Shift+n
Go to new stories
Shift+b
Go to best stories
Shift+a
Go to Ask HN
Shift+s
Go to Show HN

Miscellaneous

?
Show this modal