Preferences

They are analyzing models trained on classification tasks. At the end of the day, classification is about (a) engineering features that separate the classes and (b) finding a way to represent the boundary. It's not surprising to me that they would find these models can be described using a small number of dimensions and that they would observe similar structure across classification problems. The number of dimensions needed is basically a function of the number of classes. Embeddings in 1 dimension can linearly separate 2 classes, 2 dimensions can linearly separate 4 classes, 3 dimensions can linearly separate 8 classes, etc.

The analysis is on image classification, LLMs, Diffusion models, etc.

This item has no comments currently.

Keyboard Shortcuts

Story Lists

j
Next story
k
Previous story
Shift+j
Last story
Shift+k
First story
o Enter
Go to story URL
c
Go to comments
u
Go to author

Navigation

Shift+t
Go to top stories
Shift+n
Go to new stories
Shift+b
Go to best stories
Shift+a
Go to Ask HN
Shift+s
Go to Show HN

Miscellaneous

?
Show this modal