Arguments re: Methane as a non-renewable resource are of course right, except that we technically can synthesize methane from CO2 + electricity (e.g., terraform industries), but the pollution angle is presented as-is, without a systematic analysis, right?
What's the actual atmospheric burden here?
This essentially says "We dont know"
https://news.climate.columbia.edu/2025/03/04/rockets-affect-...
That's not even considering the increase in exposure to radiation outside of the Earth's atmosphere (absorbing materials) and weakened at distance protective EM field.
It’s amusing that the article points out how large the radiators will have to be, when the proposals already include building giant radiators. Or that the satellites will have to be vastly larger than the ISS; surprise, surprise, that’s also part of the plan.
So much criticism of space seems to fall into a few categories:
1. They think there were ever any serious engineers who thought STS was a good idea, (rather than congressional-pork, which is what it always was), and thus assume actual space technologists are basically always wrong about the possibility of ever creating anything new and reliable
2. They think cost/kg to LEO is somehow a physical law, and can never be improved on
3. If they accept that SpaceX might actually have better technology that allows new things, they still refuse to wrap their heads around 2-3 orders of magnitude cost reductions due to improved technology, they update, but mentally on the order of “it will be 50% cheaper, no big deal”
4. They just hate Elon Musk. On this one, I’m at least sympathetic
Space based data centers are probably not going to happen in the next decade, but most criticism (including this article) just reads as head-in-the-sand criticism, not serious analysis. I’m still waiting for more serious cost-benefit analysis assuming realistic Starship mass budgets.If I worked for SpaceX, I imagine I’d focus more on just getting more Starlink mass in orbit for at least 3-4 years, but after that, we might have spare capacity we might want to spend on orbital power loads like this.
Communication might be a bit rough.
It cites the ISS's centralized 16kW cooling system which is for a big space station that needs to collect and shunt heat over a relatively large area. The Suncatcher prototype is puny in comparison: just 4 TPUs and a total power budget of ballpark 2kW.
Suncatcher imagines a large cluster of small satellites separated by optical links, not little datacenter space stations in the sky. They would not be pulling heat from multiple systems tens of meters away like on the ISS, which bodes well for simpler passive cooling systems. And while the combined panel surface area of a large satellite cluster would be substantial, the footprint of any individual satellite, the more important metric, would likely be reasonable.
Personally I am more concerned with the climate impact of launches and the relatively short envisioned mission life of 5 years. If the whole point is better sustainability, you can't just look at the dollar cost of launches that don't internalize the environmental externalities of stuff like polluting the stratosphere.