Apple gives developers almost all the compute drivers you could want from them. If you can't express your GPU acceleration as a Metal Compute Shader, you probably aren't leaving any GPU horsepower on the table. ANE and MLX will get exposed in higher-level CoreML frameworks, everyone should be happy.
35% raster improvements, it's worth noting, is not super impressive on the GPU side of things. Most raster compute is a square function, to double your render resolution you need a 4x the GPU power (on-paper) to handle the pixel count. That's what, six years of annual iteration? A large component of Apple and AMD's inability to break into Nvidia's CUDA empire is their obsession over raster optimization in a world where DLSS and FSR exists. It's a noble pursuit, but even as a gamer I've gotta admit they're wasting their time. We have software methods that can close the gap in render quality between $100 GPUs and $1000 GPUs, but no such solution for GPGPU compute.
35% raster improvements, it's worth noting, is not super impressive on the GPU side of things. Most raster compute is a square function, to double your render resolution you need a 4x the GPU power (on-paper) to handle the pixel count. That's what, six years of annual iteration? A large component of Apple and AMD's inability to break into Nvidia's CUDA empire is their obsession over raster optimization in a world where DLSS and FSR exists. It's a noble pursuit, but even as a gamer I've gotta admit they're wasting their time. We have software methods that can close the gap in render quality between $100 GPUs and $1000 GPUs, but no such solution for GPGPU compute.