An alternative to abstraction is to use iconic forms and boundary math (containerization and void-based reasoning). See Laws of Form and William Bricken's books recently. Using a unary operator instead of binary (Boolean) does indeed seem simpler, in keeping with Nature. Introduction: https://www.frontiersin.org/journals/psychology/articles/10....
Mathematicians actually do the same thing as scientists: hypothesis building by extensive investigation of examples. Looking for examples which catch the boundary of established knowledge and try to break existing assumptions, etc. The difference comes after that in the nature of the concluding argument. A scientist performs experiments to validate or refute the hypothesis, establishing scientific proof (a kind of conditional or statistical truth required only to hold up to certain conditions, those upon which the claim was tested). A mathematician finds and writes a proof or creates a counter example.
The failure of logical positivism and the rise of Popperian philosophy is obviously correct that we can't approach that end process in the natural sciences the way we do for maths, but the practical distinction between the subjects is not so clear.
This is all without mention the much tighter coupling between the two modes of investigation at the boundary between maths and science in subjects like theoretical physics. There the line blurs almost completely and a major tool used by genuine physicists is literally purusiing mathematical consistency in their theories. This has been used to tremendous success (GR, Yang-Mills, the weak force) and with some difficulties (string theory).
————
Einstein understood all this:
> If, then, it is true that the axiomatic basis of theoretical physics cannot be extracted from experience but must be freely invented, can we ever hope to find the right way? Nay, more, has this right way any existence outside our illusions? Can we hope to be guided safely by experience at all when there exist theories (such as classical mechanics) which to a large extent do justice to experience, without getting to the root of the matter? I answer without hesitation that there is, in my opinion, a right way, and that we are capable of finding it. Our experience hitherto justifies us in believing that nature is the realisation of the simplest conceivable mathematical ideas. I am convinced that we can discover by means of purely mathematical constructions the concepts and the laws connecting them with each other, which furnish the key to the understanding of natural phenomena. Experience may suggest the appropriate mathematical concepts, but they most certainly cannot be deduced from it. Experience remains, of course, the sole criterion of the physical utility of a mathematical construction. But the creative principle resides in mathematics. In a certain sense, therefore, I hold it true that pure thought can grasp reality, as the ancients dreamed. - Albert Einstein