Admittedly the method in the present article is probably better than the idiocy of extracting antibacterial peptides from context for use as drug products, since at least this will always be used in the context of a full immune system and they trigger a number of genes which probably regulate a whole subcomponent of measures rather than just one or two mechanisms.
Even so, it lifts up a particular part from the diffuse field of defenses as salient and particularly worthwhile to defeat.
Also, keep in mind that many species of virus have so small genomes they have to overload the readings of parts of the nucleic acid sequences to get a full set of proteins.
Evolve to evade the immune system, certainly. But if you're implying that it will happen in the same ways, at anything like the same rate and to the same extent regardless of what we do, no that's not right.
By your logic, we'd be better off if we gave patients a cocktail containing small amounts of many different antibiotics. By giving a single antibiotic in a large dose, we are "lifting up a particular part of our field of defenses as salient and particularly worthwhile to defeat". Sounds bad.
Willing to bite the bullet and sign on to this kitchen-sink approach, of offering patients a cocktail containing small amounts of many antibiotics?
The problem I see with the cocktail approach is that a pathogen can gradually evolve defenses against everything simultaneously, in parallel. With a cocktail, every element of the cocktail provides a distinct glide path for a virus to increase its contextual fitness. That also sounds bad! The main way I see this situation improving is if two elements of the cocktail happen to act as a sort of clamp, where any virus which begins to defeat one ends up increasing the effectiveness of the other.
And the really, really bad part about abusing natural parts if the immune system to provoke pathogen resistance against them is that the resistance will target part of natural immunity.
See also https://www.hackerneue.com/item?id=35700881