You also need to bring time to market, product lifetime, the need for upgrades, fixes and flexibility, risks and R&D cost including skillset and NRE when comparing FPGAs and ASICs. Most, basically all ASICs start out as FPGAs, either in labs or in real products.
Another aspect where FPGAs are interesting alternatives are security. Open up a fairly competent HSM and you will find FPGAs. FPGAs, esp ones that can be locked to a bitstream - for example anti-fuse or Flash based FPGAs from Microchip are used in high security systems. The machines can be built in a less secure setting, and the injection, provisioning of a machine can be done in a high security setting.
Dynamically reconfigurable systems was a very interesting idea. With support for partial reconfiguration, which allowed you to change accelarator cores connected to a CPU platform seemed to bring a lot of promise. Xilinx was an early provider with the C6x family IRRC through company they bought. AMD also provided devices with support for partial reconfiguration. There were also some research devices and startups for this in the early 2000s. I planned to do a PhD around this topic. But tool, language support and the added cost in the devices seemed to have killed this. At least for now.
Today, in for example mobile phone systems, FPGAs provide the compute power CPUs can't do with the added ability do add new features as the standards evolve, regional market requirements affect the HW. But this is more like FW upgrades.
Another aspect where FPGAs are interesting alternatives are security. Open up a fairly competent HSM and you will find FPGAs. FPGAs, esp ones that can be locked to a bitstream - for example anti-fuse or Flash based FPGAs from Microchip are used in high security systems. The machines can be built in a less secure setting, and the injection, provisioning of a machine can be done in a high security setting.
Dynamically reconfigurable systems was a very interesting idea. With support for partial reconfiguration, which allowed you to change accelarator cores connected to a CPU platform seemed to bring a lot of promise. Xilinx was an early provider with the C6x family IRRC through company they bought. AMD also provided devices with support for partial reconfiguration. There were also some research devices and startups for this in the early 2000s. I planned to do a PhD around this topic. But tool, language support and the added cost in the devices seemed to have killed this. At least for now.
Today, in for example mobile phone systems, FPGAs provide the compute power CPUs can't do with the added ability do add new features as the standards evolve, regional market requirements affect the HW. But this is more like FW upgrades.