The whole point with actual inertia is that you get a large multiple of your maximum capacity without any redundant parts or added system complexity.
Keeping around 10x+ more semiconductors than you need to cover a tiny fraction of operational scenarios is difficult economics.
A semiconductor device cannot be overloaded like a spinning generator or transmission infrastructure can. You cannot trade temperature and maintenance schedule for capacity in the same way. Semiconductors have far more brittle operating parameters.
ajross
> Keeping around 10x+ more semiconductors than you need to cover a tiny fraction of operational scenarios is difficult economics.
Not according to the prices I see. Digikey tells me I can switch a MW of power for about the price of a MBP. I ask again, is there a citation for this nonsense?
The whole point with actual inertia is that you get a large multiple of your maximum capacity without any redundant parts or added system complexity.
Keeping around 10x+ more semiconductors than you need to cover a tiny fraction of operational scenarios is difficult economics.
A semiconductor device cannot be overloaded like a spinning generator or transmission infrastructure can. You cannot trade temperature and maintenance schedule for capacity in the same way. Semiconductors have far more brittle operating parameters.