Disagree. Falcon 9 is likewise not hydrolox. Hydrolox unquestionably gives you the most payload going the farthest for a booster of a given size. But why is booster size even in the equation?
For most purposes the customer does not care one iota about the booster, they are interested in the cost per kg to get where they are going. For low orbit hydrolox imposes more handling nightmare costs than it saves in amount of rocket, it is not the fuel of choice unless you're trying to impress.
(Now, things change considerably when you looking at deep space. But methalox or even kerolox fueled in orbit still beats hydrolox fueled on the ground. And hydrolox is much less storable--your rocket costs weight, necessary to reach orbit but once you're up there a smaller engine means less wasted mass. The only advantage to a bigger engine is Oberth and that is only truly relevant if you either care about time (Apollo took an inefficient path for this reason), or because you are going to carry velocity into deep space. Look at the flight path of the Webb. The booster flew higher than the maximum efficiency path because the deep space stage was puny. It wasn't powerful enough to circularize normally, the telescope fell back quite a bit before the engine had built up enough velocity to stay up. But it was worth wasting some energy on that in order to not lift as much engine away from the Earth.)
For most purposes the customer does not care one iota about the booster, they are interested in the cost per kg to get where they are going. For low orbit hydrolox imposes more handling nightmare costs than it saves in amount of rocket, it is not the fuel of choice unless you're trying to impress.
(Now, things change considerably when you looking at deep space. But methalox or even kerolox fueled in orbit still beats hydrolox fueled on the ground. And hydrolox is much less storable--your rocket costs weight, necessary to reach orbit but once you're up there a smaller engine means less wasted mass. The only advantage to a bigger engine is Oberth and that is only truly relevant if you either care about time (Apollo took an inefficient path for this reason), or because you are going to carry velocity into deep space. Look at the flight path of the Webb. The booster flew higher than the maximum efficiency path because the deep space stage was puny. It wasn't powerful enough to circularize normally, the telescope fell back quite a bit before the engine had built up enough velocity to stay up. But it was worth wasting some energy on that in order to not lift as much engine away from the Earth.)