Preferences

So I’m assuming the simulations lead to better controls software and/or mechanical nozzle designs? Similar to how CFD leads to more efficient vehicle aerodynamics?

I guess I’m trying to connect the dots on how a simulation improves the actual vehicle dynamics.


hwillis
There is some improvement in vehicle control, but the biggest impact was inside the engine. Controlling the vehicle at transonic speeds benefits a lot from simulation- control inversion is an example. When grid find pass the sound barrier, the flow through the holes of the grid becomes choked off by shockwaves, and the fin starts acting like it was solid and sideways. Since it's effectively pointed 90 degrees off, it acts like its reversed. Knowing when, how intensely, and how turning affects that is important. Simulation also helps you find unexpected places where flows may unexpectedly become super/subsonic and cause torque. Experimenting at these speeds is... hard.

Simulation inside the engine can find resonances, show where shockwaves propagate, and show you how to build injectors (pressure, spray etc) so they are less affected by the path of reflections. Optimizing things like that smoothly along a range of velocities and pressures without a computer is not very feasible, and you need a minimum of computing power before you start converging to accurate results. The unpredictability of turbulence means low-resolution simulations will behave very differently.

Out_of_Characte
the poster above was very conservative in his metrics and throtteling requirements.

Modern pressure vessels can reach 5% empty mass, thats a factor of 20

Rockets have stages, a good approximate is to stage half your rocket to get rid of the most empty mass. This also means your first stage has to have double the thrust to lift itself and its stage. Now you're at a factor of 40 just to hover.

Now you actually have to take off, usually around 1.2 to 1.4 thrust to weight.

So a more realistic scenario means your rocket engine has to throttle down to exactly 2% power while the laval nozzle is optimised for takeoff thrust only.

This item has no comments currently.