Preferences

The failure is in how you're using it. I don't mean this as a personal attack, but more to shed light on what's happening.

A lot of people use LLMs as a search engine. It makes sense - it's basically a lossy compressed database of everything its ever read, and it generates output that is statistically likely - varying degrees of likeliness depending on the temperature, as well as how many times the particular weights your prompt ends up activating.

The magic of LLMs, especially one like this that supposedly has advanced reasoning, isn't the existing knowledge in its weights. The magic is that _it knows english_. It knows english at or above a level equal to most fluent speakers, and it also can produce output that is not just a likely output, but is a logical output. It's not _just_ an output engine. It's an engine that outputs.

Asking it about nuanced details in the corpus of data it has read won't give you good output unless it read a bunch of it.

On the other hand, if you were to paste the entire documentation set to a tool it has never seen and ask it to use the tool in a way to accomplish your goals, THEN this model would be likely to produce useful output, despite the fact that it had never encountered the tool or its documentation before.

Don't treat it as a database. Treat it as a naive but intelligent intern. Provide it data, give it a task, and let it surprise you with its output.


Keyboard Shortcuts

Story Lists

j
Next story
k
Previous story
Shift+j
Last story
Shift+k
First story
o Enter
Go to story URL
c
Go to comments
u
Go to author

Navigation

Shift+t
Go to top stories
Shift+n
Go to new stories
Shift+b
Go to best stories
Shift+a
Go to Ask HN
Shift+s
Go to Show HN

Miscellaneous

?
Show this modal