> As well as NV centres and molecules, quantum dots (QDs),[14] quantum dots trapped in optical antenna,[15] functionalized carbon nanotubes,[16][17] and two-dimensional materials[18][19][20][21][22][23][24] can also emit single photons and can be constructed from the same semiconductor materials as the light-confining structures. It is noted that the single photon sources at telecom wavelength of 1,550 nm are very important in fiber-optic communication and they are mostly indium arsenide QDs.[25] [26] However, by creating downconversion quantum interface from visible single photon sources, one still can create single photon at 1,550 nm with preserved antibunching. [27]
> As well as NV centres and molecules, quantum dots (QDs),[14] quantum dots trapped in optical antenna,[15] functionalized carbon nanotubes,[16][17] and two-dimensional materials[18][19][20][21][22][23][24] can also emit single photons and can be constructed from the same semiconductor materials as the light-confining structures. It is noted that the single photon sources at telecom wavelength of 1,550 nm are very important in fiber-optic communication and they are mostly indium arsenide QDs.[25] [26] However, by creating downconversion quantum interface from visible single photon sources, one still can create single photon at 1,550 nm with preserved antibunching. [27]
"A physical [photonic] qubit with built-in error correction" (2024) https://www.hackerneue.com/item?id=39243929 :
> "Logical states for fault-tolerant quantum computation with propagating light" (2024)